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Abstract

This thesis explores how to represent image texture in order to obtain inforlnation about the

geometry and structure of surfaces, with particular emphasis on locating surface discontinuities.

Theoretical and psychophysical results lead to the following conclusions for the representation of image

texture:

(1) A texture edge primitive is needed to identify texture change contours, %.hich are formed

by an abrupt change in the 2-1) organization of similar items in an image. The texture edge

can be used for locating discontinuities in surface structure and surface geomctry and for
establishing motion correspondence.

(2) Abrupt changes in attributes that vary with changing surface geometry -- orientation,
density, length, and width -- should be used to identify discontinutics in surface geometry and
surface structure.

(3) Texture tokens are needed to separate the effects of different physical processes operating
on a surface. They represent the local structure of the image texture. Their spatial variation
can be used in the detection of texture discontinuities and texture gradients, and their

temporal variation may be used for establishing motion correspondence. What precisely
constitutes the texture tokens is unknown: it appears, however, that the intensity changes

alone will not suffice, but local groupings of them may.

(4) The above primitives need to be assigned rapidly over a large range in an image.

.1-
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I. Introduction

This paper explores how to represent image texture in order to extract information about the

physical surfaces. Recent work by Marr 11977] suggests that the description of viewed surfaces plays a

fundamental role in early visual proessing and that determining the form of the descriptions given to the

image and to the viewed surfaces should be one of the first steps taken toward understanding early visual

processing. This paper analyzes texture in terms of these surface considerations and this representational

viewpoint, investigating what aspects of texture should be made explicit in an image to obtain

information of the geometry and structure of surfaces, with particular emphasis on locating surface

discontinuities. This sets apart this study of texture from many others, which emphasize texture

discrimination, a task that probably serves different goals.

In this introduction, we shall first expand on the aforementioned role of surfaces and

representations in early visual processing, and on the use of texture to obtain surface information. Some

methodological issues will then be discussed that reflect on the current level of understanding about the

representation of texture.

The role of surfaces in visual processing

The visual world is composed mostly of surfaces. An image can thus be attributed to four

physical factors: the surface geometry (how the surfaces lie in space), the surface reflectance, the

illumination, and the viewpoint [Horn 1977]. For a sequence of images separated in time an additional

attributing factor is needed: the surface correspondence between successive images (which will be

non-trivial if the surfaces are in motion relative to the viewer). It would be of great value if these factors

could be determined from an image or sequence of images since this would provide information directly

of the physical world diiat is present only indirctlV in their combination in an imge. The human visual
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processor's facility at finding the shape and arrangement of %isual ,, rfaces, their lightness and color, the

location of discontinuities in surface orientation, depth, and reflectance indicates that this information can

indeed be determined to a considerable degree. But how is it done?

Using image texture to infer surface infoimation

The major sources of information about visual surfaces in an image include shading, stereo,

motion, texture gradients and edges. The first several make direct use of the intensity changes present in

an image. Shading obviously does so. Marr & Poggio [1978] have shown that the intensity changes

present at several scales (the zero-crossings) are effective correspondence tokens for stereo matching.

These intensity changes can also be used to obtain directionally sensitive motion information [Marr &

Ullman 19811. The intensity changes in an image thus seem to provide sufficient constraint to exploit

these sources, and an understanding of the intensity change description was evidently crucial to the

success so far [Marr & Poggio 1978, Marr & I lildreth 1980].

A precise understanding of how to distinguish among discontinuities in surface orientation,

depth, reflectance, and illumination, of how to find motion correspondence over a large range in an

image, and of how to obtain surface orientation and depth from texture gradients has proved more

elusive. In part, this may be because the intensity changes in an image alone do not provide sufficient

constraint to solve these problems easily, but that other aspects of the 2-1) information in an image such

as texture must also be made explicit and used. Let us briefly examine, in turn, each of these latter

sources of surface information.

The location of a discontinuity in surface orientation, depth, reflectance, or illumination in an

image often coincides with an intensity edge. But can the physical type of discontinuity (e.g. depth

chmgc, oricnltation change, illumination change) be determined frn mihc intcnsitic, dirct? Iy h looking

,It the 1Iil'it',~L\ pidl ict it , n cd-c. Llhn n's light soMlc t ' t, mmll t01)C I nl C,1I1, ill pniw11 ile, diStI llUi'h

i'
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a pure reflectance change from other discontinuity types (e.g. illumination changc) JU1lman 1976]. By

examining the edge profiles, other edge parsings may be possible [Horn 1977]. It is not presently known

how well edges can be parsed into their physical correlates directly from intensity information in real

images. A discontinuity in image texture originates at a discontinuity in surface structure or in surface

geometry, and can therefore be used to locate these two kinds of physical discontinuity. The location of

surface discontinuities pro ides information that is useful, for instance, to processes that must decide

where smooth surface assumptions are no longer valid, as in the interpolation of a surface across points

derived from stereo matching. Considerable emphasis will be given to locating surface discontinuities in

this paper.

Motion correspondence across several degrees of visual angle in successive images (at which

human's are quite adept -- the well-known apparent motion effect) is considerably more difficult problem

than stereo correspondence since it involves increased range, unknown direction of motion, and the

possibility of surface transformation over time. Given the profusion of intensity changes present in a real

image, motion correspondence driven solely on the intensity changes results in many candidate matches

for each motion token (e.g. edge fragment). Ullman [19791 approached this problem by a,;signing a

likelihood to each possible match between images assuming nearby matches were more likely, and

computing the maximum likelihood solution for that pair of images. An alternate approach would be to

use larger scale tokens such as texture discontinuities and collinear groupings. which should have fewer

candidate matches over a given range than the raw intensity changes, to bring the longer range motions

into correspondence. Ullman noted that tokens that were more abstract than the raw intensity changes

could be used to establish motion correspondence in humans, and called them group tokens.

)etermining surface depth from texture gradients requires extracting a measure that shows no

forcshortening in an iniage: this is nccc,,ary to f-ictor out thc cffel of chli.inn ',um face m, ciitzion from
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those due to perspective [Stevens 1981a]. In Figure 1.1, surface depth cannot he obtained from the height

of the ellipses since this measure is parallel to the texture gradient and " ill Nary both Aith surface surface

and depth. Thus, this distribution of heights could be due to either a c'linder (changing height due

mostly to changing surface orientation) or a receding plane (changing height due entirel\ to changing

depth). Ho ever, if the width of the ellipses is used and pro\ ided that the ellipses are congruent across

the surface, then surface depth can be obtained, since this measure is perpendicular to the texture

gradient and will not show foreshortening. Thus, the variation in ellipse widths will be due entirely to

changing depth. Steven's method for finding this measure with no (or least) foreshortening essentially

assumes that a description of image texture is available. In particular, such information as the position

and dimensions of small blobs in an image would be useful, while the location of the intensity changes

alone is probably too primitive a description of an image from which to extract an unforeshortened

measure directly.

In summary, distinguishing among discontinuities in surface orientation, depth, reflectance, and

illumination, finding long-range motion correspondence, and obtaining surface orientation and depth

from texture gradients may pro\e difficult if only the intensity changes are examined directly, while if the

inforimation in image texture is used, these problems may prove tractable. This makes it imperative to

understand what aspects of image texture should be identified in an image. Without knowing what

relevant data will be available, it is impossible to precisely define. say. a motion correspondence procss

or a depth from texture process, with the best that can be detennined are these processes" abstract

computational needs. Thus, we could sa. that a motion correspondence process requires image tokens

that remain in correspondence with the same physical feature in successive views and for which there are

typically a snall number of possible matches over the desired range. For depth from texture ,radients. an

unlforeshoirened meaure in ihci milage is needed. R ut t be itch i1111 SIr ,ifi reqire, I, ing rhe

-
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Figure 1.1 Surface depth cannot be obtained from the height of the ellipses. since this measure is parallel
to the texture gradient and will %arN both with surface orientation and de:pth. Surface dcpth can be
obuiined from the width of thc ellipses, howes cr. since this measure is perpendicular to thc texture
gradient and will not show foreshortening. Plros ided the cellipses arc c mi-ient across thle stirfiice, their
width w"ill hc inw rsely pruip(ioriial to their distanicc Ironii the kicwer. [Fjtigmconrtes'% (PI K. .S tcS fsj

o o o o
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form of the input data, in particular, knowing what aspects of image texture to detect in an image and

how they should be represented in the visual system.

Representational Enphasis

We seek to determine the early visual representation of image texture, since the form of the

description of image texture must be specified before its computation can be specified. If the broad goals

of the computation are not well understood, but instead some image computation is defined prematurely,

the results are likely to be of little value in the long term to the theory of %ision. This representation's

primitives -- the basic assertions that can be made about image texture -- need to be specified, in

particular. Other important representational issues to be determined include the range and resolution

over which these primitives can be assigned in an image, and the referencing systein for retriev ing these

primitives (see Marr and Nishihara [1978] for a discussion of Nisual representations). Marr 119761 has

called the early representation of the intensity changes and 2-1) geometric structure in an image the (full)

primal sketch (the raw primal sketch represents just the intensity changes).

The primal sketch is the first of several representations that Marr [1977] sees as having a central

role in the computational theory of vision. The primal sketch is used to construct the 21-D sketch, a

viewer-centered representation of the visible surfaces in a scene. It is in the 22-D sketch that the various

factors that produce an image are separated -- the surface geometry, surface reflectance, the illumination,

and the viewpoint. Many processes that provide surface information from images. such as depth from

texture, can be viewed as reading from the primal sketch and writing to the 22-1) sketch.

The term early' texture representation is used to indicate that we are interested here in the

description of texture that is produced early in the visual processing, and is used for extracting global

surface information (the creation of the 2/2-1) sketch). and not a much richer description produced by

local scrtiliv that %&c iighl expcc ,xiS br Il' 11C P1ipos, 01 r-LtcviIoil. antl is i1l[h 1310V hlioiicd in

L l'if
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speed and image range than the early texture representation.

Informal definition of image texture must precede its precise computational definition

It is inevitable that the definition of image texture will be imprecise initially: we have to rely

upon an intuitive definition. This has been the case with other aspects of visual processing. An intensity

edge, for instance, is informally defined as a place in an image where the intensit changes abruptly, with

a surface correlate ofa discontinuity in surface orientation, depth, reflectance, or illumination. Recently,

Marr & Hildreth [1980] have formally defined an edge in terms of the spatial coincidence of intensity

changes at two nearby scales found by a convolution operation that will be described later. Their method

defines a precise computation on an image for detecting edges. The informal definition, however, existed

first, spccifying roughly what is to be represented, and what significance it has with respect to physical

surfaces. The onnal definition then specifies how it is to be detected from an image. h'le idea of

detecting abrupt intensity changes is very intuitive and was an important precursor to determining their

precise computation. "lhe aspects of image texture that should be detected is not as intuitively obvious.

Thus, we must begin by understanding roughly what aspects of image texture should be represented in an

image and what are their physical correlates. Once we have approximate definitions of what we want, we

can then examine exactly how to compute them from an image. Such informal definitions can also be

used to test for their psychophysical existence.

This paper is divided into two parts. Part I develops the theory of the representation of texture,

and comprises Sections 2 through 5. In Section 2. physical constraints on surface structure are

formulated. In Section 3 and 4, two kinds of image texture primitives, the le.vlurc edge and the texture

tokens respectively, are introduced along with the ralionale for their utility to the i,,ual sy,,tein. Section 5

iunal I i/c , Part I.

,Ii
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Part I of this paper is devoted to demonstrations of the human visual system's early

representation of texture, serxing as a check on the utility of these primitives to a successful visual

processor. Section 6 describes demonstrations supporting the existence of a texture edge primitive in this

representation, and Section 7 describes demonstrations that restrict the range of what constitutes the

texture tokens in this representation. Section 8 summarizes Part 11.
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2. Physical Constraints on Surface Structure

An image is a two-dimensional projection of the three-dimensional wor'l. An important goal of

early visual processing is, in a sense, to invert this mapping. If the point in space corresponding to each

image point could have arbitrary position and brightness, this task would be impossible. Our abilities to

perceive the 3-1) world visually indicate, of course, that this is not the case. *he %isual Aorld must be

otherwise constrained. These physical constraints on the visible world and on the projected image must

be identified in order to understand how to infer bickward from an image. liree physical constraints

will be identified that are relevant to surface structure. 'Ihese constraints in their original form are due to

Marr [1981].

The predominance of surfaces

In the introduction, the visible world was considered composed mostly of surfaces that are

smooth enough that their local surface orientation could be discussed. For instance, a leaf defines such a

smooth surface. A hedge containing this leaf will itself define a smooth surface when viewed from

sufficiently far away. Even at distances where its leaves can be resolved but the variation in the distance

to them is small relative to their absolute distance from the viewer, the hedge can be considered an

approximately smooth surface. Thus, only in a physical situation such as a snowstorm would suitable

surfaces be hard to define.

A leafs reflectance function would be fairly constant over its surface if it were uniformly

pigmented. For a hedge, however, its composite structure and the effects of mutual illumination and

occlusion would make the spatial variation of its reflectance function very complex. This illustrates our

first constraint: the .visible world can be regarded as being c(nnposed of sinooth sutfices having reflectance

.''i n. whi mpalial varitio i, ' be comlh %.
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There are two consequences of this constraint in an image. First, image points typically

originate from surface points. Second, it may be very difficult to determine analytically the geometry of a

surface such as a hedge from the intensity values directly (i.e. b) treating it as a shading problem) even if

the location of the light sources is known, because of the complex nature of its reflectance function.

While an analytic statement of the spatial variation of the hedge's reflectance function may be

complex, defining its spatial structure with respect to items that constitute it could be less so. 'he leaves

that form the hedge's surface may be of uniform size and density. The leaves themselves may have

markings with their own characteristic attributes. Explicit descriptions of each of these kinds ofsurface

item present in the hedge will capture information that is otherwise buried in its analytic reflectance

function. Two additional constraints formalize this notion.

Different processes form different kinds of surface items

A leaf and a leaf marking are different not only to our senses, but they are intrinsically different

in terms of their physical nature and origin. In order to formalize this intuitively simple idea, we can

think of leaves as being generated by some physical process operating on a surface at a given scale, while

leaf markings are generated by some different processes operating at a smaller scale. This provides the

second constraint: physically different processes operate on a surface to firm different kinds of items there.

One set of processes operating at a given scale, thus, determines the size and shape of the leaves in a

hedge. Another forms The markings on those leaves. One set of processes determines the spatial

arrangement of the hairs on an animal's coat. Others form the spots and markings on that coat. iTis

constraint is important because it permits i physical distinction to be made between those aspects of

surface strncture that are essentially the same kinds of items (such as two leaves in a hedge), being dl,, to

the same physical processes. from those that are dill.rent kinds of items (such is a leaf and a leaf

matrking, ora ifand a hikit k)}, h'imLg duC to %cr. dilt,'rfe t)ro.esses.
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Items generated by the same processes are similar

The third constraint is: surface items generated by the same physical processes tend to be more

similar to one another in their size, shape, lightness, color, and spatial arrangement than to surface items

generated by other processes. 'This states that with respect to these attributes, a leaf is more likely similar to

another leaf than, say, to a brick.

In an image, the projection of the surface items generated by the same processes will ten I to be

more similar to one another in size, shape, contrast, color, orientation, and spacing, than to the projection

of other surface items that are generated by different processes. Note, however, that the similarity may be

preserved only locally in an image. Changing surface geometry and perspective projection can destroy

global similarity since size, contrast, orientation, and spacing can all vary with changing surface geometry.
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3. The Texture Edge

As stated in the introduction, an important goal of early visual processing is determining the

different physical factors that produce an image. In particular, this involves decoupling surface

orientation, depth, and the location of discontinuities in these from surface reflectance and illumination.

In this section, we shall focus on surface discontinuities. We shall see that one consequence of the

previous section's constraints is that abrupt changes ill texture in an image can be used to identify

discontinuities in surface geometry and surface structure.

The location of surface discontinuities is not explicit in the intensity changes

The location of discontinuities in surface structure or surface geometry are not yet explicit in the

intensity changes. There may be a myriad of contours present in the intensity changes, only a few of

which coincide with a discontinuity in surface geometry or surface structure. Others will be due to the

internal structure of a surface or to shadows and highlights. For example, in Figure 3.1 the bottom-most

horizontal line, which coincides with the texture boundary, may indeed be present in the intensity

changes but nothing there distinguishes it from the other hori/ontal lines, also present in the intensity

changes, as the location of a texture change in the image, and thus the likely location of changing surface

structure or surface geometry (e.g. a brick wall abutting a grass lawn). Thlere may even be no significant

intensity change coinciding with the image of a surface discontinuity, while contours defined by the

image structure may still be present there. It is the image structure contours that hold the key to

identifying discontinuities in surface geometry and surface structure.

Two opes of inage structure contours

Not e~ery contour in an image is defined solely by intensity changes coincident ith the

cOati1ur. A Ltiltotiu .Lci Aso bc dcfllcd h ui1ntic '1.(1i1C ulld ill t Ic,1t1 tO dilIlu w i.. One kiild
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Figure 3.1 There arc many contours in this figure that arc explicit in the intcrnsmt changes: for instance,
the bottom-most horizontal line at the texture boundary is present there. Nevcrthlcess. this line has not
yet heen distinguished from thc othcr hoi/ontal lines, Ahich arc also preseint in tile initensity changes. as
the location of at texture discontinuity in thle image. Locating such ahrupt texture chancs in an iniage is

s inc I1 iei t\theil

importantic he dmf d e ley locatio n of discontinuities in surface sti-ucture or sur'ace
geometry,

,'/,,', ,' , ,' ,;,,
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can be created by an abrupt change in some 2-D organization in an image. In Figure 3.2. for example, the

450 change in the orientation of the line segments defines a contour that corresponds to the boundary

between the two oriented regions. A sudden change in local density of the line segments in this figure

also defines such a contour, which corresponds to the external boundary of the two regions, with the line

segment density vanishing outside these regions. We shall refer to such contours as texture change

contour- A second kind of contour can be defined by the local alignment of xarious image features. For

example, the local alignment of the terminations of the lines in Figure 3.3 defines such a contour. We

shall call these alignment contours.

We explore texture change contours and their use in identifying discontinuities in surface

geometry and surface structure in this section. Alignment contours will, for the most part, not be treawd

in this paper. Let us examine next the relationship between texture change contours and surface

discontinuities.

Discontinuities due solely to changing surface structure

First, consider a discontinuity in surface geometry where the surface reflectance function is

constant across the discontinuity. Examples of this are two surface fragments that are adjacent in an

image and have the same surface structure and coloration but have different surface orientation, depth, or

rotation. For instance, Figure 3.2 could be the image of a creased surface as shown in Figure 3.4a or,

instead, it could be the image of two surfaces, one rotated 450 with respect to the other as shown in

Figure 3.4b. Figure 3.5 could be the image of two similarly textured surfaces differing in depth (one V/2

farther away than the other), or again it could he a creased surface (with, say, one side parallel to the

image plane and the other side at a 600 slant).

-rom the constraints of the previous section, the image of a local patch of a structured surface

here the smU Iicc gcolctr docs no( chang%' iiltuih %% ill likek contain. .t . , tk u1111a11 '.calc". tcin that m e
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similar to one another in orientation. spacing, color, contrast, size. and shape. But %here the surface

geometr) changes, geometric attributes such as orientation, density, and length of die image of die surface

items will change. (Intensity, contrast, and color can also vary with changing surface geornetry, although

large contrast and color changes are unlikely since these would require perverse illumination or

reflectance functions.) Thus, at a discontinuity due solely to changing surface geometr\. there N ill often

be an abrupt change in these geometric attributes of the image of similar surface items, forming a texture

change contour.

Discontinuities due to changing surface structure

There is another physical source of texture change contours in an image, and this represents the

other basic type of surface discontinuity -- one due to changing surface structure. For instance, Figure 3.5

could be the image of two adjacent surfaces lying in the same plane that ha~e different dot denibes.

When surface structure changes, the similarity constraint of Section 2 indicate,, that items at gi% en scales

on one surface will likely be more similar to one another in orientation, color, contrast, site, and shape

than to items on the other surface, resulting in abrupt changes in the items at each scale at the image

location of the surface discontinuity, and giving rise to a texture change contour. In this case, however,

any surface attribute can change. not just geometric attributes, the surface structure can change arbitrarily

across this kind of surface discontinuity.

Texture change contours need to be made explicit

We have seen above that a texture change contour can be formed b. a discontinuit in surface

geometry or surface stncture. A texture change contour can he due finalI! to some combination of these

faclors. Thus, a texture change contour identifies the likel. location of a surface discontinI:itN of some

forin. I is uclne makkes the iepreseniation (o texiure clh,ini.c cmi'(lll , \lIhlc sinlce. as 1 e AC-A )MC.

L..'
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the location of surface discontinuities may not be present explicitly in the intensity changes. This

represents the first major implication for the early texture representation: te.xturv change contours should

be made explicit in the image since theY identify the likel) location of discontinuities in surface geometry or

surace struclure, infonnation that may not be explicit in the intensity changes alone.

Separating the physical factors that produce texture change contours

Is it possible from an image to distinguish among those texture change contours due solely to

changing surface geometry, those due solely to changing surface structure, and those due to some

combination of these two factors? Unfortunately, the answer is that this cannot always be achieved from

image texture information alone. When the surface structure changes completely, forming a texture

change contour, there is no information in the image texture about whether the surface geometry changes

there also. A structural change can also mimic a geometric change as, for example. \hen Figure 3.5 is due

to a change in surface dot density, and not to a change in depth. -toweier. it is possible to distinguish

between those texture change contours that could be due solely to change in surface geometry, and those

that must involve some surface structure change. The former contain onl, g,,, "ip, ( fi,,y, m in the image

of the surface items across the texture change contour: it AoUld he p.',i, % !h i1ta ble 3-1)

configurations of two surfaces having the same surface structure t0 prjc. i thI. II g a.T cAch J these

texture changes. The latter contain non-geonietric changes. as in I iurc h No, h.inge in surface

geometry can cause the squares in this figure to be transfonned Into d ts ha, ing th\ ,,tree dcnmit AS the

squares. Instead, the surface structure must have changed. At the end of thi,, Sedion. Ae shall explore

how to distinguish between geometric and non-geometric texture changes.

* The texture edge primitive and its uses

A he rcprcscntation ol an llCUitt,,iLs t.ngV C (iitoiii hqil , 11" i 1itcnsit cdc ,iid 1h,,i prnluiti es.

I!
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which arc local assertions assigned at many points along the contour that make explicit the position, local

orientation, contrast, and width [Marr 1976, Marr & Hildreth 1980. Analogous to this, points along a

texture change contour in an image can be represented in our early texturc representation by a texture

edge primitive, which makes explicit local contour position and orientation at the %cry least.

We have already seen above that the representation of texture change contours is important for

detecting surface discontinuities and can bc used to distinguish between those discontinuities that

possibly could be due solely to a change in surface geometr, and those that cannot. In addition to this,

the texture edge primitke could be useful for establishing motion correspondence. Gien the many

possible candidate matches of edge and bar fragments for motion correspondence o% er sev eral degrees of

visual angle, the larger scale and rarer texture edges gi~e fewer possible matches over a given range.

Range of the representatioan

An issue of particular importance is the range in an image over which this texture edge primitive

can be assigned, since this determines, in part, the computational burden of forming the early texture

representation, One extreme of this range would be a representation that encompasses only a very small

portion of an image (e.g. the fovea) at one time, or that allows only a very few primitives to be assigned at

one time. At the other extreme would be a representation that encompasses the entire image and can

allow as many primitive assignments as image resolution permits. While it is difficult at this point to say

precisely where in this ronge our early representation of texture should lie, it can be said that it must lie

closer to a full image range representation than to a very restricted but economical one that can represent

only a small fraction of the texture edges foiund in an image. Very limalited range or resolution may have

he appropriate for some visual representations, but such limitations are undesirable for the early

representation of image texture considering the use, In which this representti Q m " ill he put.

As prcsious'h outlined, the lull pi1,1l ,ketch, whihh uCprC,,tlt 11 11W utsut hauu, m.Id
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image structure, serves as the basic description of an image from which the 21 z-i) sketch, a

viewer-centered representation of the viewed surfaces in space, is formed. In this framework, the early

texture representation is considered a part of the full primal sketch. Further, the formation of the 21/2-1)

sketch's description of the viewed surfaces -- their orientation, depth, reflectance, location of

discontinuities -- is a fundamental goal of early visual processing. If, as has been argued above, the

texture edge primitive makes explicit aspects of image structure that are useful for creating a

representation of surfaces present throughout an image, then it follows that texture edges must be

detected rapidly throughout the image. 'his is an expensive step,. since it requires that considerable

computational resources be brought to bear if an entire image is to be processed in a fraction of a second.

Next, as texture edges are detected throughout an image, they need to be stored away somewhere, and the

most direct way to do this is in a representational memory encompassing the entire image. This is

particularly important for establishing large range motion correspondence using texture edges, since there

is a wide image range over which a particular token could move. 'hbis approach may seem

computationally expensive compared to the use of a scrutinizing processor for local analysis of surface

structure that is directed more leisurely across the image. But such a local scrutiniiing processor would

be inherently too slow to rapidly cover large portions of an image and feed as input to the 2/1-I) sketch.

Detecting texture edges

Conceptually, the detection of texture edges can be di ided into two major steps. First, the basic

stnctural elements that will be used to represent the image texture locally must be made explicit. We

shall call these primitive elements the te.turc ioAtci.. Second. the spatial xariation of these tokens are

used to locate texture edges. It is not presently known what constitutes the lexture tokens: this could

conccialy range from grey-lc\el alues to primitives that reptesent indli~dual texturc clemens and

their ,111rIll .'" Mlh o lx, olent'Ition. ICligth. \ (oit . tir t. ' Mlv id. 110 c ioi ('g. sII linle "cs 'Illl in

N I'i - - _ .. . ..
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Figure 3.2). In Section 4, we shall see that the range in which the texture tokens lie can be restricted, but

their precise form has yet to be resolved. Until it is, it will be difficult to say much about methods for

detecting texture edges.

One issue that can be discussed at this time, however, is the desirable dimensions for the texture

token attributes. We saw above that at a discontinuity due solely to changing surtface geometry (constant

surface structure across the discontinuity), it will be geometric dimensions such as orientation, length, and

width that will vary with the changing surface geometry. It would therefore be desirable to have texture

tokens that have attributes that change when the surface geometry changes, if discontinuities due solely to

changing surface geometry are to be detected.

Discontinuities in surface structure can be detected in two ways. One way utilizes geometric

attributes. When the surface structure changes, everything is likely to change including the geometric

attributes given above. For example, the change in size of the items in Figure 3.6 could be used to

identify the boundary between the two regions. A second way to detect discontinuities in surface

structure would use changes in structural attributes. For example, the number of corners per item ;n

Figure 3.6 could be used to identify the texture boundary between the two regions, since in the left-hand

region there are four corners per item (square), while in the right-hand region there are /ero per item

(dot). This second method would be useful when all geometric attributes happen to match across the

texture boundary causing the first method to fail. Whether this is likely to occur in natural images is

uncertain however; a point that we shall return to in Section 6.

We have not yet discussed how to distinguish between discontinuties due soleN to changing

surface geometry from those that contain structural changes, but only how to detect either kind %hen

present. For instance, we saw above that the changing si/e of the image of surtace item,, could be used in

',,(1e c;a , to detect either kind of diutnlinUiy, but it wotllI not d,,tinguti,h he .cen them. I ct us, torn

. ..
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to this issue next.

Distinguishing geometric and non-geometric texture change contours

How can texture changes contours that possibly are due solely to a change in surface geometry

be distinguished from those that must involve some non-geometric, structural change? When the surface

geometry changes but surface structure does not at a texture change contour, many image properties

usually remain invariant: the number of different scales at which surface items occur on a surface, the

approximate contrast, color, and packing factor (how tightly packed) of the items at each scale, and

whether or not they are oriented. When surface structure changes at a texture change contour, everything

is likely to change including the above geometric invariants. A procedure that utilizes such geometric

invariants would thus seldom err in distinguishing geometric from non-geometric contours.
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4. The Texture Tokens

Using image texture to infer surface information involves two broad stages. In the first stage,

the basic elements that arc to represent the local structure of the texture, which we shall call the texture

tokens, arc made explicit. In the second stage, the spatial variation of these tokens can be used to infer

local surface orientation, surface depth, and the location of surface discontinuities, and their temporal

variation may be used to infer motion correspondence. It is not presently known what constitutes the

texture tokens of the first stage; this could conceivably range from grey-level values to intensity changes

to primitives that represent individual texture elements and their attributes such as small blobs of a

particular orientation, contrast, and size. This section explores the nature of the texture tokens and

attempts to restrict this range.

Separating the effects of different surface processes

A major function the texture tokens must serve is separating the effects of different surface

processes in an image. As Section 2 stated, surface structure is often due to different physical processes

operating on a surface, each at it own scale. Items generated by a given process on that surface will often

be similar to one another in attributes such as size, shape, orientation, color, and contrast. Ihe spatial

variation of the projection of these items in an image can provide information about the structure and

3-1) geometry of the surface on which the iterm!s reside: for instance, a discontinuity in the orientation of

similar items in an image can signal a discontinuity in surface geometry or surface structure (see Section

3). To utilize this information, however, it is necessary to separate the effcts of different processes, for

otherwise any useful information carried by items generated by a given phyical process will be obscured

in an image by the cffctus of other prmesscs Also operming there. For -. mmlc. if the tommnlon

olcil tion of brick, in a %,ill i, to be ipprctlitcd' ticil if i, piCtci.ihlc thit n'ilhcr i-itlkiiii,, om thne
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bricks nor large spots encompassing several bricks interfere with the description of the organization of the

bricks themselves.

The role of scale in separating the effects of different processes

Since different physical processes often operate at different scales on a surface, the particular

scale at which an image of such a surface is examined should be a useful factor for separating the effects

of the different processes operating there. For example, if Figure 4.1 is examined at very small scales,

then neither a change in the distribution of grey-level values nor a change in the orientation distribution

of the intensity changes can identify the boundary between the two regions that are composed of w's of

differing orientation, since the amount of ink per unit area is the same on each side of this boundary, and

the orientation distribution of the component line segments is the also same on each side of the boundary

-- 50% are horizontal and 50% are vertical. The orientation information needed to identify the boundary

between the two regions is carried at a larger scale in the orientation of each w as a whole, and not at a

smaller scale in the orientation distribution of its component line segments.

The intensity changes at a particular scale can be made explicit using a method developed by

Marr & Hildreth 11980). In their theory of edgc detection, they propose that an intensity change in an

image l(x,y) at a particular scale can be found by (in effect) first smoothing the image with a Gaussian

filter G of the desired bandwidth, and then applying the Laplacian opJator V2 to the smoothed image.

T[he loci of zero-crossings in V2(G - 1) = V2G * I define the location of intcnsity changes at that scale.

Figure 4.2 shows the 7ero-crossings in the convolution of Figure 4.1 with a 7 2G operator having an

excitatory region of width about the same as the width of the %'s. Note that at this scale, the approximate

boundaries defined by the indikidual 's comprise the /cro-crossings. Thus, the predominant local

orientation of the /ro-crossings is the same as the local orientation of the 0,. and the significant change

in their oinentation ;it (he hundarN htc(cc the t o iegnsfv in iLui 4.1 OHM hl' W.d t4 MnkC thit

!'
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Figure 4.1 The orientation distribution of the component line segments is the same in both the left and

right regions of this figure -- 50% of the line segments are horizontal and 50% are wcrtical. It is the

changing orientition of the individual w's and not their component line segments that defines the texture

boundary.

IHgure 4.2 T*he /ecr-cro-.,,, ings, of Figure 4.1 when con\ohed with a 77G opciator hi,ming n excitatorN

region "id) width abooil the samIne ats dile width of the %'s. SinceO the icro-(:rowqi s,at this sc,ide malke

explicit the rough boundatry defined b\ eatch ". the hotal prcdMoI1n,111 of lent'llii (tl (11C /Cro-crossing ,

will inath the otientation dr'fined I)\ the indi\idual Ws, mid "III C-h,111c "IM1fLdlikII At the (c\turc
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boundary explicit. Thus. we see that if this image is examined at the appropriate scale, the effects of the

process that determines the orientation of each w can be separated from those smaller scale processes that

determine its component line segment structure, and in this case the intensity changes at that larger scale

are sufficient to separate the approximate boundaries of the W"s from their internal structure.

The V2G operator can also be used in certain cases to find intensity changes that are coincident

with the texture boundary itself. Figure 6.8, consisting of convolutions of a 900 change in orientation of

small line segments shows, however, that there need not be any significant intensity changes present

there. In fact, we should not expect any to be there unless the average intensity changes between the

textured regions on each side of the texture boundary.

The raw intensity changes are not always sufficient for separating the effects of different processes

In view of Figure 4.2. it would be tempting to think that the vG fero-crossings at various

scales may be sufficient as the set of texture tokens. There are. howeser, ph%,,ical reasons that Ae should

not expect this to be so. The intensity changes at a given scale will not solel) correspond to stnictural

items at a particular scale, but will be affected to some degree by items at all scales and theit Affect will

vary with the contrast of-these items. In the brick wall example, high contrast marking, on the hricks

could noticeably influence the zero-crossing description at the scale of the brick,, themsch e,, - ,iinw,tliig

that was earlier considered undesirable for the description produced h% the tex tire tokci,,. I 1i ,hw that

this affect indeed occurs, a technique devised by Stevens 11981b] was used to creatc I-igurc 4.3 his

figure is composed many small 2x2 black and white checkerboards. Stecn., rcasoncd that it' ,uch small

checkerboards appeared on a background of grey that is the ps~chophvsick,: JC'.eagc tf*hC hlAtk aid

white, then tile output of any smooth convolution opcmir th it CI101R fps,,s,.,,c\ t ls (it, these

checkerhoirds will not diflr ,,inifi anlls From that opcrit , uutpiil wii niiviiqj.ini, tis, thc glc

h ,IA IJ O H 111, 11 ll' d 1), 11111d 1hw , p) I tiL.ul, li! lli . I . 11 ,1 1 , 1, , l t ill ,,", I

.. . .. .. ... . .. . . ... . Iho-Iw r . " 1 1
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oriented element and the 900 change in orientation of the triples defines a texture houndar,, there will be

no scale at which the distribution of the intensity changes can be used to ijcntif. this texture boundary,

when this figure is provided with the matching grey background. Figure 4.4 giNes the 7'G zero-crossings

for Figure 4.3 near the texture boundary. At the smallest scales of the V22G operator, the edges of the

component squares of checkerboards are tracked by the zero-crossings. At the largest scales, as expected,

the zero-crossings are of low amplitude (amplitude is not depicted in these figures) and seem to meander

randomly. At intermediate scales, parts of the rough boundary defined by each collinear triple appear in

the zero-crossings, but many zero-crossings corresponding to the each triple's internal structure also

appear. But at no scale is thc boundary of the triples made explicit and their internal structure filtered

out as was possible for the w's above, making extraction of the triples' orientation and the texture

boundary non-trivial. In Section 7, we shall see that the human observer can rapidly detect a boundary

created by an orientation change of such checkerboard triples.

To reinforce this idea that the raw intensity changes cannot always separate the effects of

different processes, a second example will be given. The previous example showed that the substncture

of an item can influence the intensity changes at large enough scales to leave that item only implicit in tie

intensity changes. The second example again uses items at two different scales, but this time, the smaller

items are not components of the larger items, but instead are independent of them. Figure 4.5 consists of

line segm'ents of two different lengths. The shorter line segments are oriented at 450 on the left-hand side

of the figure and at -45) on the right-hand side. while the longer line segments are randomly oriented

across the figure. Without the longer line segments, there would be a sharp orientation change in the

1re-crossings at the scales that capture the smaller line segments. The randomly oriented, longer line

segments. b adding noise to the local orientalion distributions, weaken this sharp change in the

/c 'lI-t)N'lW. lhus. 'AC .'lii hie111 xaple \Mhele items froln (11ne pro 't",, mmi \(Crl h (li, inkn"..,



-16-

4-1

*UW

a. aaa

S0LO 0

N L(2, w

a16. 120. 24.

Figure. 4.4 '111 /cro-croxsincus of portions or' F~ire 4. (w&hen gi\Cfl the ma tching grey hNickground) near
the texturc ),(oonda. ir hei conx nixed \&ith 7' ( operators oftioIS uSI I/ ie left-most figure of each
row depic:ts the area ot i-gure 4.3 used to produce L11c ierwcrossings inl thAt row&. [h le numiber adjacent to
cetch fii: re i2i es the diameter of' the cxc ititnr\ region of thle 7 ( i operator 0' d to produce the
/ero-wifs InI Thit F111Me. Mwer eil 2X- JIC chceroaird is 2x 2 unit iii AiC.\t no scale is (tic boundir\
(it eCh dlueckerboard tiple (c\piicit in the iero-criissiiigs vnd i(,, iwcimii sniuictwor hhered out. Itirther.
there i1.' on s~,ic 11 s hiL1h thle bnuiidirx h' be(%cul (the to iepitmix of dileolcicm ebiar triple
iorientiti I,, denmut d espircuds h% .a /eio-Crnvanell LOtIbIolll nor I" the.re sigih'I'lt Ciiiogep ill thlt Ilf
orientation ditribuitiwn oI [tIC tei-ios sile lextur houindar\



-37-

/ / 41 '1 ,;>?' K.,.
/ \ / /, //, / / \

X\\

II i' . i t / i l \ 
\'

Figure 4.5 '[he shorter line segments in this figure arc oriented at 450 on the lef't-hand side and at -45 0 on
the right-hand side, Midhe the longer line wcgmcnts arc randomly oriented across,. thc figure. Without the
longer line segmeinth. dhie "ould he a sharp oicivtion change in the /eIircrONSiniS aIt the ,Lcales that
capture the smaller line segments. [he longerIilie segmentN s eakn thi i change in the /C: 0. rossinlgs.

I Ill



-38-

changes that best capture those items from a different process. [he information necessary to separate

these two kinds of items is clearly present in this image, howevcr: it is containcd in the differing lengths of

the individual line segments themselves.

What are the texture tokens?

We have secn above that the raw intensity changes appear to be too primitive a description of

image texture to suffice as the sole texture tokens. In the above two examples, it is groupings, not

indixidLil points, of the intensity changes that correspond to the items that produce the texture boundary

-- the oriented triples in the first example and the short line segments in the second example. This

suggests that some form of local grouping of the intensity changes that results in tokens that roughly

correspond to indixidual line segments, small blobs, local clusters and collincar groupings of these could

provide a description of the local structure of image texture that better separates the items produced by

different physical processes. Marr [1976] has proposed that much local image structirc can be made

explicit by assigning place tokens to such items as terminations, small blobs and line segments, which are

presumably found from the intensity changes, and then by grouping these tokens to Find collincar

groupings and local clusters, which are then also assigned places tokens. These tokens would correspond

to small markings, scratches. surface elements and local groupings of these on physical surfaces. It is not

presently clear whether the early representation of texture requires tokens the., faithfully and precisely

represent these kinds of items everywhere in an image. Perhaps some computattionally less expensive

processing that roughly identifies a sizable fraction of such items would suffice at this stage, with a more

precise description available with scrutiny if needed.

Exactly what the texture tokens arc thus remains an open question. It solution is important not

only for understanding how to detect texture boundaries. Ahich has been cmphasiied here, but also for

depth From texture and motion cotrespondence. The texture tokens could po' idc the tlnihtshortenod

il
ii
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measure needed to obtain depth from texture, as discusscd in the introduction. Further, the texture

tokens, like the texture edge, would represent larger scale and rarer primitihes for motiom correspondence

that have fewer candidate matches over a given range than the intensity changes. But being more precise

about these processes must await the determination of the texture tokens, and not much can be said

definitely about the form of the texture tokens at this point other than it appcars that the intensity

changes alone will not suffice.

-t -" ,
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5. Summary of the Theory

Three physical constraints on surface structure...

(1) The visible world can be regarded as being compostc of'd " smn I I; surtlt Si',: , (1 1N

]ZnctiolS whose spatial variation niaY be comnllex.

(2) Phisicallv different processes operate on a surftcc to firm difft n w A ,, i, /1, t i.

(3) Strfilee items generated bY the san' processes tend to be, ;nu' .bnla, mo'r ,n' '., ,: ., ,' '.,.

shape, lightness, color, and spatial [arrangement than to so rj c" ' t10M 1 (4l I l/0 r ,,

...combined with the goal of producing the 2' z-I) sketch, a N icwer-centered reprcsent.|uon h ih. hIC

surfaces where the factors that produce an image -- surface geometr%, surfacC reflectancc, illminition.

and viewpoint -- are separated, lead to the following conclusions for the representation of the image

texture:

(1) A texture edge primitive is needed to identify texture change contours, which are formed by an

abrupt change in the 2-1) organi/ation of similar items in an image. The texture edge can be used

for locating discontinuitics in surface structure and surface gcomctrN and for establishing motion

correspondence..

(2) Abrupt changes i attributes that vary with changing surface geonctr- orientation, dcnsity.

length, and width -- should be used to identify discontinuties in surL, -e geornctr and surface

structure.

(3) Te.iture tokem are needed to separate the effects of different phsical processes operating on a

surface. flicy represent the local structure of the image texture. Their spatial variation can be used

in the detection of t 'Xtlure disconrinitic, uInd texture gradient. and their tilporal ariation nia\

he used fbr estahlihin, motion correspo mdcnce. Wht jrcuiseCh Constitutels the t',turC token is

unkno\% i it ppceim c\ e that th1 u st1,chiN L ,lonk. \% I ill not 51 ,,1it c. ut ,locul ploipt gs

r - .
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of them may.

(4) The above primitives need to be assigned rapidly over a large range in an image.
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6. Texture Edge Demonstrations

The primary purpose of this section is to present psychophysical evidence that texture edges are

detected by the human visual system and that they are represented over a large range in an image.

The secondary purpose is to characterize those types of texture changes that can give rise to

perceived texture edges.

Texture discrimination and texture edges

Most previous psychophysical studies of visual texture have concentrated on their

discrimination (e.g. Julesz [1973.19811 and Beck [1966]). For example, in Figure 6.1 we can

immediately see without scrutiny that the lower left region of the textured pattern is different from

the rest of the pattern; we can discriminate the regions. In Figure 6.2. the textured pattern looks

homogeneous without scrutiny even though the upper right corner is composed of backward R's,

while the remainder of the pattern is composed of forward R's (Julesz 1973]. In this case, we cannot

discriminate the regions. Several theories have been advanced to explain why some textures are

discriminable while others are not, with Julesz's second-order statistic conjecture probably the best

known [Julesz 19731.

The problem with applying texture discrimination to the texture edge problem is that texture

discrimination is an "anything goes" task: the viewer may use any means at his disposal to try to

disriminate the textures within the allotted time. Suppose a viewer is asked which one of four

quadrants of a texture pattern is different from the others (as in Figure 6.1) and suppose that he

correctly identifies that quadrant. Did he find the correct quadrant by first finding the texture

boundary between the diflcrent regions, or did he instead sample four elements, one fhomn each

quadrint. nd compare diem? iccatvsc it k oticci.ahk' thit tc\tirto di,,- inn,i cn t to 1t
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Figure 6.1 A discrim ninable texture. The lower left region can bc seen immediately to have a different
texture from the rest of the figure.
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least in some cases without the texture boundaries being explicitly represented. such texture

discrimination studies cannot be used as evidence that texture edges are detected by the human

visual system. For our purposes, these studies can only show that there are some texture differences

(e.g. Figure 6 2) for which texture edges are not detected, since if thc were detected, we could

presumably discriminate them. But given the "anything goes" nature of the discrimination task, it

can not be assumed that all discrininable textures have their boundaries explicitly represented.

This means that different paradigms to study texture edges must be utilized.

The apparent motion paradigm

It was suggested earlier that texture boundaries could be used to establish mot~on

correspondence. We can test this hypothesis and test the human abilit. to perceise texture edges by

using an apparent motion paradigm. It is well known that if a display sequence such as Figure 6.3a

foilowed.by Figure 6.3b is presented to a vie er with a short (s;a 30 nisec) interstiinulus inter al

(ISI), the viewer will perceive apparent motion -- in this case a single square %Aill be seen to mtove to

the right and rotate 450 . Interestingly. if the straight line sides of the square aic replaced bh texture

edges, the correspondence can still be achiexed. When the s, 'ncc in Figure 6.4 is presented. the

whole pattern is seen to moxe to the right with the embedded squarc appearing to both moxe to the

right and rotate 450 . I Here the tcxture boundary is formed b, a 900 orientation difltence in the

small line segmcntis. lypically, an embedded square of a hout 50 N isual aingle mnd a presentation

sequence of 3()1 mnscs Was Used for each frame wkith an ISI of' 30 isecs. but the comrespOndenoe can

be achiced Oscr a %ide range Of* %isuatl angit and does not lkpend criticall. mn the ISI. It %ill he

shown behlow that !here is no intcnsit edge at am, scale prescnt at thC ho(tidar% betA .cn the two

textured regions so the corresptodente nuii he esLhlished hour i lie teture dl.rence.

Rtmt.ii thlmtdrln. ct alI 119731 hax' rpncl rtcd i"ilflt1h ll p.cm , ii )iiii i texture
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(a)

(b)

Iigure 6.3 An apparent motion sequence. Displa. (a) is prcIctted f or 100 nmscc, a blank displa follows
for 30 nscc. and then I)lspl,t\ (b) is presented fo r 30(0nmcc. I he \cs cr pcrLei\ es a singlkquae Iflo\ Ing

to the right and rotating.
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boundary with a second-order statistical difference (with equal first-order statistics). In their

paradigm, an embedded square is translated but not rotated. This latter fornat has the

disadvantage for our uses that the direction in which the embedded square of different texture is

moved can be perceived even when its boundary is only weakly, if at all, perceived. By adding the

rotational component to the embedded square's motion, only a clearly perceived boundary gives

rise to a square that appears to both translate and rotate. 'lhe key point here is that unlike the

texture discrimination tasks, it is difficult to imagine how a viewer successfully can complete this

motion task without his visual system making explicit the boundar between the two regions of

differing texture.

The static shape recognition paradigm

A second paradigm that involves static shape recognition can also proide evidence of human

ability to. perceive texture edges. If an embedded figure in a texture pattern is sufficiently complex

in shape and can still be recognized without scrutiny, then it seems likely that that shape's boundary

is detected by the visual system. In Figure 6.5, which uses the same texture change as in the motion

example, there is little difficulty in recognizing which letter of the alphabet corresponds to the

embedded shape. Thus, this gives evidence from two independent techniques -- the apparent

motion paradigm and the static shape recognition paradigm -- that a particular kind of texture

boundary (one forned by a 900 difference in small line segments) is detected by the visual system.

Kidd, Frisby and Mayhew 119791 have found that texture boundaries can initiate vergence

movements for stereopsis. [his could serve as a basis for a third paradigm for studying texture

boundaries, but this has not been investigated here.

An orientation difference of line segments is not the only sort of' texture boundary that is

SUCiLesul ill the appilel0t iiiilon ,and shaipc recognition paradigmi,,. I igolre 6.6 ,hoA, i diflteclcn'
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in the dot density (4:1) that results in immediate shape recognition. In the apparent motion

paradigm, the same texture change results in the embedded square being perceived as mo\ ing to

the right and rotating. There are many sorts of texture changes that fail in both the shape

recognition and motion paradigms. Figure 6.7 show several types of texture changes for which

static shape recognition is difficult without scrutiny. These same texture changes do not result in

the correspondence of the embedded square in the apparent motion paradigm: no embedded

square is seen moving to the right and rotating. In particular, Figure 6.7c, which fiiil.\ the tests for

perceived textilr." edges, passes the Julesz-style test for texture discrimination (Figure 6.1). While

some texture boundaries result in motion correspondence and shape recognition and others do not,

in all the texture boundaries that have been tried, motion correspondence is established if and only

if shape recognition is immediate. '[his strengthens the hypothesis that texture edges are explicitly

represented by the visual system.

Texture edges are not always explicitly present in the zero-crossings

It was claimed that in Figure 6.5 there is no average intensity change at the texture boundary at

any scale, and thus this boundary is not explicit in the intensity changes. '[his claim can be

substantiated by convolving the figure with several sizes of the 7 2G mask of Marr and Hildreth

11980], and examining the zero-crossings in the output. As described earlier in Section 4, the

zero-crossings of a '2G operator, which is the composition of a Gaussian and the Laplacian,

identify the locations of the intensity changes at the scale determined by the bandwidth of the

Gaussian. Figure 6.8 shows the zero-crossings in the convolutions of a portion of the texture

boundary in Figure 6.5 with 72G masks of various sizes. Note at the smallest scale, the individual

line segments are captured. and at the largest scale the the external boundar is captured. but at no

scale is the boundair hct ceu the tA o regions prescnt in the /Clo-closings.
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Figure 6.8 The zero-crossings for the texture change in Figure 6.5 using V72G operators of various sizes.
The leftmost figure of each row depicts the image used to produce the iero-crossins in that row. The
numhcr adjacent to each figure giscs the diameter of the excitatora region of the 7

2G operator used to
produce the /cro-crossings in that figure. where cach line segment is 9 tmits long. At no scale is the
boundaNr between the two regions of diffcrent line segment oricntation cxplicitl\ dinmarked b a
/cro-crossing Contour.
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In Figure 6.6, there is a large scale intensity change that could be used to identify the embedded

region's boundary (this easily is seen to be true by viewing the figure from far enough away that the

individual dots are not resolvable -- the embedded shape can still be perceived due to the large scale

intensity change). The fact that a texture boundary that is due to changing texture element density,

length or width is often accompanied by a large scale intensity that coincides with the texture

boundary makes it difficult to access experimentally if these texture changes result in perceived

texture edges in the absence of these large scale intensity changes; further work is needed in this

area. Orientation changes have been emphasized in this paper, since they are free of this

complication.

Image range of the texture edge primitive

Motion correspondence and shape recognition can be achieved with these figures as large as

30-400 in visual angle; at this size, local scrutiny could reveal only a small portion of the boundary

at a given time. But the motion correspondence is immediate, and shape recognition can still occur

when a figure is briefly flashed (300 mscc). This supports the hypothesis that many texture edges

are being simultaneously found over a large portion of the image.

Characterizing those texture changes that produce perceived texture edges

A complete characterization of those texture changes that produce perceived texture edges and

those that do not (as evidenced by the above apparent motion and shape recognition paradigms) has

yet to emerge. A complete phenomenological characterization is difficult to obtain because there

may be many attributes (e.g. contrast, color, orientation, density, length) that the visual system can

use to detect texture edges, and new attributes can always be proposed that have yet to be tested

psychophysically. 1-urther. it is difficull to separale some attrihmtcs experimentally. such as texture

hw "D -? .. . .... ±.+: ,..e .-- ,:,, . .. .. ++ "
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element density from average local intensity, as discussed above. Nevertheless, two rules seem to

characterize many of those texture changes that can and cannot produce perceived texture edges.

The first rule is that significant, abrupt changes in attributes that vary with changing surface

geometry produce perceived texture edges. This has already been shown to bc the case above with

the orientation of texture elements. Intensity, density, and size changes of texture elements can also

produce perceived texture boundaries, but further work is needed to decouple the large scale

intensity changes from the density and size changes to access each attribute's individual effect.

Conversely, the textures in Figure 6.7 were generated by holding constant average local texture

element density, orientation, length and width, but otherwise using different shaped texture

elements across the texture boundary. Even though there are significant structural differences in

the texture elements across the boundary, such as the number of terminations and corners. these

changes alone do not produce perceived texture edges. In fact, texture element color and contrast

are the only attributes that do not (usually) vary appreciably with changing surface geometry that

have been found so far to produce perceived texture edges. This contrasts with Julesz's results for

texture discrimination which indicate that changes in the number of tenninations can apparently be

used to discriminate textured regions [Julesz 1981]. As mentioned earlier, texture discriminability

does not insure that a clear texture boundary will be perceived.

This first rule is not surprising in light of the discussion in Section 3 on the uses of texture edges.

Reiterating what was said there, texture edges can identify discontinuities in surface geometry and

surface structure. At a texture discontinuity where surface geometry changes but surface structure

does not, it will be those image attributes that vary with surface geometry -- e.g. orientation,

density, length, width -- that can be used to identify the discontinuity in the image. At a

discontintmily " here smu face structure changes, everything is likely (o ch;ige -- orientation, densil}



color, contrast, size. Further, the presence or absence of gcomctric invariants such as similarly

oriented items at a given scale that remain oriented across a texture boundary can be used to

distinguish between these two kinds of discontinuities. Thlus, while structural attributes such as

number of terminations and corners could help detect changes in surface structure when geometric

attributes such as orientation, density, and size, all happen to be constant across a texture

discontinuity, the visual system could consider such an occurrence too unlikely in natural images to

justify its detection.

The second rule is that the comparison of distributions of a given attribute of otherwise similar

texture elements is kept simple. This rule is detailed here only for the orientation attribute. Figure

6.9 shows that the oriented line segments at two fixed orientations (450 and -450) found inside the

embedded Z-shaped region are sufficient to match the randomly oriented line segments found

outside the embedded region -- the embedded letter is difficult to recogniz.e quickly. Likewise, the

same texture change does not produce motion correspondence in the apparent motion paradigm.

This suggests that the visual system may assume that the orientation distribution of itemns at a given

scale either clusters around a single value or is, for all intents and pturposes, random. A process that

naturally produces, say, a distinct, two-peaked orientation distribution (as 450 and -450) of

otherwise identical items would be deemed too rare to be worth distinguishing from a random

distribution. Incidentally, this contrasts with previous work by the author using texture

discrimination instead, for which three orientations were found necessary to match random

orientations [Riley 19771.
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7.Texture Token Demonstrations

In this section, psychophysical demonstrations are presented that the elcemcntar tokens that the

human visual system uses to represent the local structure in image texture do not consist solely of

the raw intensity changes at a variety of scales in an image. Specifically, demonstrations will be

given that there are no significant changes in the orientation distribution of the V2G zero-crossings

at any scale that can be used to detect some texture boundaries that humans can readily perceive.

Two different approaches are taken to create these demonstrations.

The Checkerboard Paradigm

The first approach utilizes the checkerboard technique described in Section 4. The general idea

is to use small black and white checkerboards as component items in larger scale groupings so that

the larger scale groupings will not be explicit in the larger scale intensity changes due to the

integrating effects of the V2G convolution operator. In particular, each dot in Figure 7.1 can be

replaced by a small 2x2 black and white checkerboard and the entire figure given the matching grey

background that is the psychophysical average of the black and white (see Figure 4.3). ''his match is

achieved by viewing the checkerboards from sufficiently far away and adjusting the background

grey until the checkerboards disappear. Under these conditions, the embedded letter, which can

easily be perceived in the unmodified Figure 7.1, can still be immediately recognized in the so

modified figure. provided the figure is viewed from sufficiently close in (otherwise, if the viewer

moves back from the figure, the checkerboards eventually begin to disappear, with those toward the

periphery being affected first).

The previous section argues that the above is evidence that a texture change consisting of a large

change in the orientation of collinear triples of tiny 2x2 checkerhboards can he identified b. the
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human visual system. Since any smooth spatial operator that encompasses several of these

checkerboards will respond with the same output that is given to the grey background, there is no

intensity change at any scale at the boundary between the two textured regions. Of crucial

importance here is the fact that the orientation defined by checkerboard triples is not explicit in the

intensity changes either. As shown in Section 4, the V2G zero-crossings at no scale make explicit the

boundaries of individual triples while filtering out their internal structure, and thus the chang:,,g

orientation of the triples at the texture boundary cannot be found by looking for a significant

change there in the local orientation distributions of zero-crossings of V2G operators at some scale

(see Figure 4.4).

Mixed lengths paradigm

The second approach taken to demonstrate that the raw intensity changes are not sufficient as

the sole texture tokens utilizes texture elements of two different lengths. Ihe general idea is that if

one set of texture elements of a given length has, say, some oriented structure in a texture, then this

oriented structure will be easier to detect in the presence of other texturc elements of a very

di.fferent length than in the presence of other texture elements of a similar length provided the

texture elements are first separated on the basis of their length. Figure 7.2a shows a texture pattern

composed of line segments of two different lengths. The shorter line segments are oriented at 650

inside the embedded H-shaped region and at 250 outside this region. The larger line segments are

nine times as long as the shorter line segments and are oriented at 450 throughout the texture

pattern. Figure 7.2c shows, for reference, just the shorter lines found in Figure 7.2a. Figure 7.2h

contains an identical copy of the shorter line segments found in Figure 7.2a, but the larger line

segments have been shrunk 1/9th in length (to die same length as the other line segments) with a

corresponding nine fold increase in their density (i.e. number/area), thus kCcpiing the total t1111unt
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of 450 contour over a given area constant. Thus, measuring the amount of contour at a given

orientation per unit area taken from very local descriptions of the intcnsity changes found in an

image of these figures would not show significant differences betwcen Figure 7.2a and Figure 7.2b.

Figure 7.3 and Figure 7.4 contain V2G zero-crossings at various scales near the embedded texture

boundary of Figure 7.2a and of Figure 7.2b, respectively. They were generated to sho% that for no

scale (operator size) is there a significant difference between the local orientation distributions of

Mero-crossings for Figure 7.3 and Figure 7.4 that would result in a noticeable difference between the

detectability of the embedded region in Figure 7.2a and Figure 7.2b. At the smaller scales, the

zero-crossings where the line segments of different orientations cross are %ery similar for Figure 7.2a

and Figure 7.2b. and since the local amount of contour at each orientation is the same in both

tigures by design, the local zie'o-crossing distributions of the two figures at these smaller scales are

quite similar. At the larger scales, the smaller line segments are not resolved: since the smaller line

segments carry the orientation change that produces the texture boundary, differences in the local

,ero-crossing distributions of the two figures at larger scales are not relevant to the detectability of

the texture boundary. 'hus, if texture boundary detection were based on identifying significant

changes in the distribution of zero-crossings at the boundary, the texture boundaries in Figure 7.2a

and Figure 7.2b should have similar detectability. Note, however, that in Figure 7.2a. the

embedded letter is easier to recognize than in Figure 7.2b, an effect that is accentuated at distant or

oblique viewpoints. Ibis suggests that the line segments are somehow first separated on the basis

of their length.

'Ibis result may seem at odds with those due to Treisman 11977,19801. She found, using a variety

of techniques' that human observers were %ery poor at the pre-attenti~c selection of items haling

the conjunction of two or more iittribute \,ilucs (e.g. shape:ll Itnd holor:rcd) in i field ot'distr,:tors.
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Figure 7.3 /ero-crossings for the texture change in :igure 7.2a using 72G operators of various si/es.

Again. the leltmost figure of each row depicts the image used to produce tile iCro-crossings in that row,

and ie number adjaccitt to each figure gi cs the diameter of tie cxcitator. region of the V'G operator

used to produce the iero-crossings in that figure, where the shorter line segments are 9 units long.

Comparison with Figure 7.4 reveals that at the smaller scales, there i no significant difference in tile local

orientation distribution of the zeru-crossings between the tIso figures. w hile at the larger scaleN the smaller

line segments, which LIntain tile boundary-forming orientition change, are not rc solbed. I'hus, tile
results in I-igure 7.2 cannot he explained if the texture boundar is detected solel\ on the basis of

significant changcs in the local iero-crossing distribution across the bitndarb.
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In Figure 7.2, the selected attributes are orientation and scale (length of line segment). A possible

explanation is that scale is indeed special as suggested earlier -- large differences in size may not be

treated like other variations in attribute values, since they strongly suggest that different processes

are responsible for the respective items.
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8. Summary of Demonstrations

(1) Two different experimental paradigms -- one based on static shape recognition of a textured

region embedded in a textured surround and one based on motion correspondence of texture

boundaries -- support the hypothesis that some kinds of texture boundaries are detected by the

visual system and are made explicit in a representation that covers a large range in an image.

(2) V2G zero-crossing results indicate that there are no significant intensity changes at any scale

coincident with the texture boundaries in the above figures and thus the detection of these

boundaries must be based on more abstract texture measures.

(3) Two rules characterize many of the texture changes that can and cannot produce perceived

texture edges as evidenced by the experimental paradigms in (1):

(a) Significant, abrupt changes in texture element attributes that vary with changing surface geornetny

-- orientation, length, density, width -- produce perceived texture edges

(b) The comparison of distributions of a given attribute of othenvise similar texture elements is kept

simple -- e.g. two fixed orientations are sufficient to match random orientativus in the texture

boundary paradigm&

(4) Two different experimental paradigms -- one using oriented groupings of2x2 checkerboards and one

using line segments of two different lengths combined with I2G z:ro-crossing results cast doubt that the

raw intensity changes at various scales would suffice as the sole texture tokens; there are no significant

changes in the distribution of the V 2G zero-crossings at any scale at the texture boundaries found in these r

demonstrations.
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